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Mathematics Methods 3 & 4
Test 1 2016

Section 1  Calculator Free
Differentiation, Anti-differentiation and their applications.

STUDENT’S NAME MALUNL KEY

DATE: Friday 4™ March TIME: 25 minutes MARKS: 27
INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser, Formula sheet.

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

0. (6 marks)

Differentiate the following. Do not simplify your answer.
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2. (3 marks)

Determine I2x(7—3x2)4 dx
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3. (3 marks)

Given that J‘] ’ (2x —3)dx = 6, determine a.
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(6 marks)

The air in a hot air balloon is being inflated such that the rate of change of its volume at any
time ¢, minutes, is given as:

AV _ 3oy

dt for t>0
If initially the balloon has 3 m® of air in it, determine:

(a) The rate of change in volume when ¢ = 1. Explain the meaning of this. [2]

A2 3(1)-2(0)
aé - img/m{n /

The balloon is z“/\s%aﬂmnews(-ﬂ (NCreasiag in
volume bj Im?/min at £=1. /

(b) For what values of ¢ the volume is increasing. [2]
av 5.
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() The volume of the balloon after five minutes. [2]
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5.

(4 marks)

The graph of y = f(x) is shown below.

0 2
Given [ f(x)dx=4 and [ f(x)dx =1, determine the following:
0
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(d) The area enclosed by f{x) and the x axis.
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(5 marks)
U v

Given the function y = (x +2)(x* —4x +4).

(a) Determine the gradient of the tangent to the curve at x = 3. [3]
dy 1 (-uern) + (2r-a)002) S/
dr P
o yn vy + (220 78)
= I-yx -4 / -
/ () - 4(s) - 4 gradiect =11/
; - / — 3 —
Eli» Ly =3 9) -4 |
(b) Using calculus techniques, determine the nature of the stationary point at x = 2. [3]
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Mathematics Methods 3 & 4
Test 1 2016

Section 2 Calculator Assumed
Differentiation, Anti-differentiation and their applications.

STUDENT’S NAME MALLINL KEY

DATE: Friday 4" March TIME: 25 mins MARKS: 23
INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser, Formula sheet.

Special Items: Three calculators, notes on one side of a single A4 page (these notes to be handed in

with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

7. (6 marks)

The volume Vem®of water in a vessel is given by V = %nxs‘, where x cm is the depth of the
water in the cylinder in cm.

(a) Determine an approximation for the change in depth when the volume of water changes
from 200 to 210 cm?. [3]

(1
V=100 / -%— - &

2
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(7.2¢) / Ax = 0421 ¢m /

(b)  Determine the percentage change in the volume of the vessel if the depth has increased

by 6%. 3]
AV = T x 6.06x él/ = 0.8
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8.

(4 marks)

A company manufacturing a new bike determines that the marginal cost (in dollars) for the
production of the ™ unit is given by the expression:

dC _ 200000
dn  (n+20)°
(a) The initial set up cost is $ 10 000 (i.e. the cost of producing no bikes is $ 10 000). Show
that the expression for the total cost of producing » bikes is:
—200000 ,
czmuoooo (/(g) = 10000 [2]
[ = " e 10000 = =200 OOCG 4 ¢
& 20
= -200000 / ( = 20000 /
210 [ - -20000606 F 20000
o n+ 10
(b) If the company sells each bike for $200, how many bikes must be sold before it first
makes a profit? [2]
Selve 200n = —200000  + 70000
n+20 '
YL = q O s Ci CT
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9.

(7 marks)

A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to
reach point B, 8 km downstream on the opposite bank, as quickly as possible.

He could proceed in any of three ways:

1. Row his boat directly across the river to point C and then run to B
. Row directly to B
3. Row to some point D between C and B and then run to B

distance
eed
taken for the man to travel from A to B can be represented by the equation. 2]

(a) Given that time = and x is the distance from C to D, show that the time (#)
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(b) Using calculus techniques, determine the minimum time taken by the man to reach point
B and the distance he would travel by foot to achieve this minimum time. [5]

tx) = -é—('x"m)l‘ + v (3-2)
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10. (6 marks)

A particle moves in rectilinear motion with a velocity of 7 m/s as it passes through
a fixed point O.

¢t is the number of seconds since passing through O. Acceleration a is defined as a =mf —n,
where m and n are constants.

When ¢ = 1, the velocity is 12 m/s, and when ¢ = 7 the particle is instantaneously at rest.

(a) Calculate the values of m and n. [3]
2
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(b)  Hence, determine the expression for the velocity as a function of time. [1]

Vie) = -trabert

(c) Determine when and where the maximum velocity is attained. [2]
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